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Abstract
To cope with many difficult problems that must be solved urgently for sustainable development, practical ap-
proaches available for rational decision making is highly demanded in modern technologies. In such situation,
various optimization methods have been successfully applied so far. In advance, under multiple goals some of
which conflict with each other, a particular field known as multi-objective optimization has been studied from var-
ious aspects. Thereat, multi-objective evolutionary algorithms (MOEA) are especially interested in these decades.
They are viewed as a useful technique for revealing a wide relation of trade-off among the conflicting objectives
and supporting multi-objective optimization that will attempt to obtain a unique preferntially optimal solution. To
enhance its availability, in this paper, we have proposed a simple procedure for solving single-objective optimiza-
tion problems (MOPs) using MOEA. Then, the idea is extended to solve the scalarlized MOP such as weighing and
ϵ-constraint (lexicographic) formulations. Being classic, they are often used in various situations even presently
due to the effectiveness regardless of their simplicity. Moreover, we propose to carry out a post-optimal evolution
for repairing some shortcomings inherent to those approaches and making them adaptive. Actually, it is deployed
in co-operation with our elite-induced evolutionary algorithms. After preliminarily examining a few properties of
the idea, a set of benchmark problems including multiple peaks have been solved to examine the performance as
a global optimization technique. The significance of the post-optimal evolution for the scalarlized MOP has been
also verified numerically.

Keywords : optimization, multi-objective evolutionary method, NSGA-II, post-optimal evolution, elite-induced
evolutionary algorithm, scalarlized multi-objective optimization method

1. Introduction

To cope with many difficult problems that must be solved urgently for sustainable development, practical optimiza-
tion methods are highly demanded for supporting rational decision-making in modern technologies. In this sense, meta-
heuristic optimization methods opened a new horizon since they can work with various situations flexibly and effectively.
They never need differential information of functions at all, go well with meta-model or model of model and achieve
global optimization. Noticing the amazing progress of simulation technique as in software and computer as in hardware,
such feature is quite suitable for practical optimization. Moreover, such approach has successfully extended to the area
associated with multi-objective optimization. Actually, multi-objective evolutionary algorithm (MOEA) has been greatly
studied in these decades (Coello, 2001)and is still developing under various interests in future direction (Coello, 2012;
Lucken et al., 2014). These MOEAs aim at revealing a wide relation on objective function values among the conflicting
objectives and supporting multi-objective optimization that tries to obtain a unique preferentially optimal solution.

To enhance availability of such MOEA, in this paper, we have proposed a simple procedure for solving single-objective
optimization problem (SOP) using MOEA. Besides such a plain application, it is straightforwardly extended to solve
certain scalarlized MOPs given by the weighing and ϵ-constraint formulations, for example. Being classic, they are often
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used even presently due to the effectiveness regardless of their simplicity. It is interesting to show the proposed procedure
can derive the unique preferentially optimal solution of such scalarlized MOPs by using the method for multi-objective
analysis such as MOEA. So far, such ideas have not been reported anywhere.

Moreover, another idea is deployed as a post-optimal evolution for repairing some shortcomings inherent to those
classic approaches. Such concern is involved in one of the future challenges referred to incorporation of DM’s preference
(Coello, 2012) and has been discussed only in a few studies (Karahan and Koksalan, 2010; Branke, 2008). Actually,
it is developed in co-operation with our elite-induced EAs. It should be noted here we can conveniently use the same
MOEA both for the prior optimization and the post-optimal evolution. Eventually, the aims of this study is to extend the
availability of the conventional MOEAs and provide a rational procedure to repair an inherent shortcoming embedded in
when solving the scalarlized MOPs.

The rest of this chapter is organized as follows. In Chapter 2, Concerns associated with the present studies are de-
scribed briefly. Chapter 3 describes the proposed idea and its cool application associated with the post-optimal evolution.
In Chapter 4, after a preliminary numerical experiment, solution ability for SOP is examined through various benchmark
problems. Then, significance of the post-optimal evolution is discussed demonstratively. Some conclusions are given in
Chapter 5.

2. Problem Statements
2.1. Single-objective and multi-objective optimizations

Generally, SOP is formulated as [Problem 1].

[Problem1] min f (x) subject to x ∈ X

where x denotes a decision variable vector, X a feasible region and f a scalar objective function.
Though many mathematical programming methods have been traditionally applied, in modern optimization, they are

likely replaced with meta-heuristic or EAs. This is because they can practically cope with various simulation models and
expect to obtain a global solution even for complicated problems.

Meanwhile, MOP is formulated as [Problem 2].

[Problem2] min f (x) = { f1(x), f2(x), . . . , fN(x)}
subject to x ∈ X

where f denotes a vector objective function some elements of which conflict with one another.
The aim of MOP is to obtain a unique preferentially optimal solution through subjective judgments of decision maker

(DM) on his/her preference. On the other hand, to reveal a certain trade-off relation among the conflicting objectives and
to serve useful information on trade-off is called as multi-objective analysis (Psarras et al., 2090; Bennett, 1989; Sophos et
al., 1980).In our opinion (Shimizu et al., 2007) , therefore, it is proper to say MOEA as a multi-objective analysis method.
However, a variety of MOEAs have been developed under the name of ”optimization”. Regardless of such fundamental
definition, MOEA is still useful for MOP since it can derive Pareto front as the essence of trade-off by a single run of
computation.

2.2. Multi-objective optimization in terms of scalarlization
As a widely used approach for MOP, certain scalarlized methods have been applied traditionally due to their simplic-

ity in application. The basic idea is to integrate a vector objective function into a scalar one as V( f (x)) and transform the
original problem as follow.

[Problem3] min V( f (x)) subject to x ∈ X

Its specific formulation is known as the weighting method and given as follows.

[Problem4] min
N∑

i=1
wi fi(x) subject to x ∈ X

where wi denotes the weighting coefficient representing the relataive importance of i-th objective function.
On the other hand, another one known as ϵ-constraint method is given as follow.
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[Problem5] min fi(x)

subject to
 x ∈ X

f j(x) ≤ ϵ j, j = 1, . . . ,N,, i

where ϵ j is the upper bound compromise for j-th objective function.
Here, it should be noted there never exist general ways to appropriately decide these preference parameters like wi

and ϵ j beforehand. This is an inherent weakness of these traditional approaches.

3. Proposed Idea and Its Cool Application
3.1. Basic idea to solve SOP by MOEA

The proposed procedure to solve [Problem 1] by MOEA is very simple and deployed in terms of the following
propositions.

⟨Proposition1⟩ Objectives “ min f (x)” and “ max f (x)” always conflict with each other.
⟨Proposition2⟩

“[Problem 1’] min{ f (x),− f (x)} s.t. x ∈ X ” or
“[Problem 1”] min{ f (x), 1/ f (x)} s.t. x ∈ X ” is viewed as a bi-objective problem.

Accordingly, we can generally solve SOP by applying MOEA as follows.

(Step 1) Solve [Problem 1’] (minus) or [Problem 1”] (inverse) by applying a certain MOEA.

(Step 2) Sort the above result in ascending order on objective value f (x).

(Step 3) Select the top of the list as the optimal solution for the original problem, [Problem 1].
Visually, the optimal solution will locate at the edge of the Pareto front of [Problem 1’] after stretching the straight

front along with generation (Refer to Figure 1 in 4.1).
Regarding the approaches associated with this topic, a few ideas are proposed for the constrained SOPs. The first one

(Wang et al., 2007)proposed a scheme that transforms the original problem into an unconstrained bi-objective problem by
considering a measure of the constraint violations as the second objective. Another one (Coello, 2000)tries to transform
the problem into an unconstrained MOP having the original objective function and its constraints as separate objectives.
In this case, the constrained SOP is converted into a MOP with N objectives when the number of constraints is N − 1.

It should be noted, in these approaches, trade-off is to be considered between the optimality and the feasibility. Hence,
it becomes quite hard to derive some feasible solutions efficiently if any particular ideas could not be introduced in the
algorithm. Accordingly, we cannot directly apply any conventional MOEAs to solve the problem. Moreover, the second
approach refers likely to many-objective problem more difficult to solve since N becomes large for practical applications.
Against these defects, our idea can cope both with the unconstrained and constrained SOPs by just applying the usual
MOEA. In other words, we can solve those SOPs even if we have not any EA solver or no knowledge about its usage. To
the best of our knowledge, such idea is not proposed anywhere so far.

3.2. Post-optimal evolution for scalarlized MOP
Noticing the above basic idea, we can now solve the scalarlized MOP mentioned in the previous section. This is

a cool application of MOEA to extend its availability also not noted anywhere. Actually, this is taken place through
applying MOEA to each bi-objective problem as follows.

[Problem3′] min{V( f (x)),−V( f (x))}
subject to x ∈ X

[Problem4′] min{∑N
i=1 wi fi(x),−∑N

i=1 wi fi(x)}
subject to x ∈ X

[Problem5′] min{ fi(x),− fi(x)}

subject to
 x ∈ X

f j(x) ≤ ϵ j, j = 1, . . . ,N,, i
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Moreover, it is possible to cope with the inherent weakness embedded in the scalarlized MOP through a post-optimal
evolution mentioned below. For this purpose, our elite-induced MOEA (EI-MOEA) (Shimizu et al., 2012; Shimizu and
Nakamura, 2015)is just amenable.

The principle behind EI-MOEA is just simple and straightforward from the original MOEA. Instead of using all
randomly generated initial solutions, it introduces some number of the elite solutions that are obtained from a certain
procedure. We can expect the existence of elite solutions induce the Pareto front at the direction toward their pre-existing
locations. By adjusting the number of such elites, it is able to manipulate a distribution of final solutions so that the result
would lie on a specific region on Pareto front. Due to the existence of the elites, selection pressure that might contribute to
the accuracy and convergence speed (Deb and Saxena, 2005)is always kept at high level and makes EI-MOEA powerful
and computation load smaller.

The aim of the post-optimal evolution concerned here is to re-evaluate the optimal solution obtained at the first
round (prior solution) (Shimizu et al., 2016).Hence it is adequate to limit the distribution since it is enough to inspect the
solutions just near the prior solution. Actually, this procedure associated with EI-MOEA is taken place as follows.

(Step 1) Solve [Problem 3’] or [Problem 4’] or [Problem 5’] through the procedure mentioned in the previous section.

(Step 2) Select the elite solutions from the above result.

(Step 3) Solve [Problem 6] by applying the same MOEA as (Step 1) after incorporating the elites into a set of random
initial solutions.

[Problem6] min f (x) = { f1(x), f2(x), . . . , fN(x)}

subject to
 x ∈ X∑N

i=1(1 − fi(x)/ f ∗i )2 ≤ δ

where f ∗i denotes the optimal value of i-th objective function and δ an upper bound that will control the extent of the
post-optimal evolution or number of candidates for the final decision. This is closely related to the previously mentioned
concern for introducing DM’s preference into multi-objective analysis.

To obtain a properly distributed Pareto front within the specified region, we apply NSGA-II (Deb, 2000)for the
above problem. NSGA-II uses the idea of elitism that can avoid both deleting the superior solutions found previously and
crowding to maintain the diversity of solutions. By virtue of these operators, NSGA-II is presently considered to give
very good performance for various problems.

4. Numerical Experiments
4.1. Preliminary evaluation of basic idea

To examine a property of the proposed procedure mentioned in 3.1, we tried to solve SOPs having each objective
function of the benchmark problem known as FES1 (Huband et al., 2006; Cortezm, 2014).

min{ f1(x) =
D∑

i=1
|xi − exp(i/D))/3|0.5,

f2(x) =
D∑

i=1
(xi − 0.5cos(10π/D) − 0.5)2)}

xi ∈ [0, 1], i = 1, . . . ,D = 8

Actually, we solved the problems by using the open code of NSGA-II in R library with the default tuning parameters
(Refer to the library named ”mco”), i.e., crossover probability = 0.7 and mutation probability= 0.2. We set up the
population size (popsz) and number of generation (gener) as 20 and 200, respectively and showed these results in 1 where
the left-hand side graph correspond to the first objective while the right-hand side the second one. We also described
the frontier at earlier generation (gener=10) as a smaller graph in the respective figure. We can observe the linear front
expanding in the left-top direction.

To examine the performance of these results, we also solved those problems by Nelder-Mead (N-M) method which
is a mathematical programming method known as powerful. Here, N-M was applied under the initial values given by
rounding the above NSGA-II results at the first decimal point and 500 iterations. Through such search starting near the
optimum and under a large number of iteration, we can expect to obtain an almost optimal solution by this search. On the
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Fig. 1 Features of Pareto front obtained by the propose procedure (NSGA2) for bench-mark problem FES1:
Left: Result for the first objective function (min{ f1,− f1 }), Right: for the second one (min{ − f2, f2 })
Frontier at earlier generation (gener=10) in small figure expands to the left-top point along with the line.

upper right side of each figure, we put each converged objective function value next to the method name. Knowing the
results of NSGA2 are comparable to that of N-M, we can assert SOPs are effectively solvable by MOEA like NSGA-II.

4.2. Evaluation of basic idea with various benchmark problems
Now, to evaluate a comprehensive solution ability through comparison with other methods, we have tuned our in-

terest to the traditionally used ten benchmark problems some of which have multiple peaks of objective functions (Refer
to Appendix). We consider one direct search N-M taken in the previous section and four popular EAs such as DE (Dif-
ferentially Evolution), PSO (Particle Swarm Optimization), GA (Genetic Algorithm) and SA (Simulated Annealing) for
this comparison (Refer to the textbook (Shimizu et al., 2007)about their explanations). As same as the earlier section,
NSGA-II was selected to apply the proposed basic idea described in 3.1.

Each problem was solved 31 times using open codes all in R library (default tuning parameters were used so that
everyone can easily make a double check) ∗2. Regarding the population size (popsz) and generation time (gener), we set
those values depending on the dimension of decision variables D as Eqs.(1) and (2), respectively. We show the results of
minimum, median, mean and maximum values of objective function in Tables 1-10. Moreover, depending on the known
optimal value fopt, we added the success and path numbers as evaluated by Eqs.(3) and (4), respectively.

popsz = min(4(10D/4), 60) (1)

gener = min(100popsz0.7, 200) (2)

S uccess# : i f | fopt − f (x)| ≤ eps(1 + | fopt |),
then count S uccess# when eps = 5e−3 (3)

Path# : i f | fopt − f (x)| ≤ eps(1 + | fopt |),
then count Path# when eps = 1e−2 (4)

Under the present conditions, we know only DE could get a full mark and only two problems (De Jong & Martin/
Gaddy ) are solved correctly by all methods. Being inferior to DE and PSO, the proposed approach outperforms the
relative method like GA and the rests. Compared with EAs applying the multi-start search, performance of single-start
search like SA was poor overall. On the other hand, N-M has a favorable feature especially for single-peak problems
regardless of its simple algorithm.

According to the Success# first and Path# second, we ranked the method as shown in Table 11. Thereat, six apparently
poor results of NSGA-II compared with others are analyzed more in detail. We showed their histogram of the objective

∗2 Library or code names for those are as follows, respectively: DE, ”DEoptim”; PSO, ”pso”; GA, ”rbga”; SA & N-M,
”optim”.
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Table 1 Comparison among the methods for Shekel’s fox hole (D=2, popsz=20, gener=814,
fopt=0.9980038)

Item DE PSO GA N-M SA NSGA2
Minimum 0.9980038 0.9980038 0.9980038 0.9980039 0.9980038 0.9980038
Median 0.9980038 0.9980038 0.9980038 10.76318 15.50382 0.9980038
Mean 0.9980038 1.062135 0.9980038 11.89891 75.26274 0.9980038
Maximum 0.9980038 1.992031 0.9980039 23.80944 499.9823 0.9980038
Success# 31 29 31 2 1 31
Path# 31 29 31 2 1 31

Table 2 Comparison among the methods for Schwefel (D=2, popsz=20, gener=814, fopt=0.0)

Item DE PSO GA N-M SA NSGA2
Minimum 2.55E-05 2.55E-05 0.00097146 -138.1764 -138.1762 2.57E-058
Median 2.55E-05 2.55E-05 0.01505475 335.578 236.8771 0.001377
Mean 2.55E-05 15.28239 0.01922313 330.5145 294.2544 34.38634
Maximum 2.55E-05 118.4384 0.05370163 691.0067 710.6959 118.4405
Success# 31 27 4 2 3 22
Path# 31 27 9 2 3 22

Table 3 Comparison among the methods for De Jong (D=2, popsz=20, gener=814, fopt=3905.93)

Item DE PSO GA N-M SA NSGA2
Minimum 3905.93 3905.93 3905.93 3905.93 3905.93 3905.93
Median 3905.93 3905.93 3905.93 3905.93 3905.93 3905.93
Mean 3905.93 3905.93 3905.95 3905.96 3905.93 3905.94
Maximum 3905.93 3905.93 3905.99 3906.69 3905.93 3905.96
Success# 31 31 31 31 31 31
Path# 31 31 31 31 31 31

Table 4 Comparison among the methods for Goldstein/Price (D=2, popsz=20, gener=814,
fopt=3.0)

Item DE PSO GA N-M SA NSGA2
Minimum 3.0 3.0 3.00007 3.0 3.00005 3.00006
Median 3.0 3.0 3.00071 3.00114 3.00054 3.00076
Mean 3.0 3.0 3.00080 78.77431 10.83976 3.00707
Maximum 3.0 3.0 3.00179 840.0000 84.00488 3.17030
Success# 31 31 31 16 28 30
Path# 31 31 31 16 28 30

Table 5 Comparison among the methods for Branin (D=2, popsz=20, gener=814, fopt=0.397727)

Item DE PSO GA N-M SA NSGA2
Minimum 0.397727 0.397727 0.397728 0.397727 0.397728 0.397728
Median 0.397727 0.397727 0.397774 0.397727 0.397795 0.397752
Mean 0.397727 0.397727 0.397775 0.397728 0.397852 0.474839
Maximum 0.397727 0.397727 0.397854 0.397728 0.398219 2.78600
Success# 31 31 31 31 31 30
Path# 31 31 31 31 31 30

Table 6 Comparison among the methods for Martin/ Gaddy (D=2, popsz=20, gener=814, fopt=0.0)

Item DE PSO GA N-M SA NSGA2
Minimum 0.0 0.0 1.80E-06 0.0 4.14E-06 4.0E-07
Median 0.0 0.0 1.65E-05 0.0 5.47E-05 2.17E-05
Mean 0.0 0.0 1.86E-05 0.0 7.30E-05 4.67E-05
Maximum 0.0 0.0 4.22E-05 3.85E-07 0.000230 0.000287
Success# 31 31 31 31 31 31
Path# 31 31 31 31 31 31

Table 7 Comparison among the methods for Rosenbrock (D=2, popsz=20, gener=814, fopt=0.0)

Item DE PSO GA N-M SA NSGA2
Minimum 0.0 0.0 5.19E-07 0.0 2.96E-06 1.0E-07
Median 0.0 0.0 0.004154 6.95E-07 0.000172 0.002594
Mean 0.0 0.0 0.014955 2.00E-06 0.000342 0.011054
Maximum 0.0 0.0 0.065285 1.53E-05 0.001362 0.126944
Success# 31 31 16 31 31 20
Path# 31 31 16 31 31 23
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Table 8 Comparison among the methods for 4D-Rosenbrock (D=4, popsz=60, gener=1322,
fopt=0.0)

Item DE PSO GA N-M SA NSGA2
Minimum 0.0 0.0001082 0.009900 3.04E-07 0.006863 0.00037
Median 0.0 0.0007814 0.601918 1.48E-05 0.029538 0.65946
Mean 0.0 0.0009015 0.578091 0.716831 0.029936 1.00236
Maximum 0.0 0.0022440 1.243803 3.707390 0.080686 3.82302
Success# 31 31 0 25 0 2
Path# 31 31 1 25 2 2

Table 9 Comparison among the methods for Hyper sphere (D=6, popsz=60, gener=1756, fopt=0.0)

Item DE PSO GA N-M SA NSGA2
Minimum 0.0 0.0 5.17E-06 3.02E-07 0.006899 3.59E-05
Median 0.0 0.0 1.76E-05 3.97E-06 0.036040 0.000690
Mean 0.0 0.0 1.69E-05 7.55E-05 0.036648 0.000964
Maximum 0.0 0.0 2.64E-05 0.000921 0.057633 0.007309
Success# 31 31 31 31 0 30
Path# 31 31 31 31 1 31

Table 10 Comparison among the methods for Griewangk (D=10, popsz=60, gener=1756, fopt=0.0)

Item DE PSO GA N-M SA NSGA2
Minimum 0.0 0.0 1.02E-06 0.002927 0.659215 1.00E-04
Median 0.0 0.0 0.007397 0.033673 0.888272 0.007543
Mean 0.0 0.000958 0.004536 0.074354 0.873531 0.010779
Maximum 0.0 0.007396 0.007402 0.367000 0.990362 0.043669
Success# 31 27 12 1 0 10
Path# 31 31 31 3 0 26

Table 11 Rank of method for each benchmark problem on Success# and average success rate over
all

Problem 1st 2nd 3rd 4th 5th last
Shekel’s fox hole DE, GA, NSGA2 PSO N-M SA
Schwefel DE PSO NSGA2 GA SA N-M
De Jong All solved successfully
Goldstein/Price DE, PSO, GA NSGA2 SA N-M
Branin DE, PSO, GA, N-M, SA NSGA2
Martin/ Gaddy All solved successfully
Rosenbrock DE, PSO, SA, N-M NSGA2 GA
4-D Rosenbrock DE, PSO N-M NSGA2 SA GA
Hyper sphere DE, PSO,GA,N-M NSGA2 SA
Griewangk DE PSO GA NSGA2 N-M SA
Average rate of DE=100 PSO= NSGA2= GA= N-M= SA=

success [%] 97.8 81.4 73.8 71.7 55.9
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value in 2. The feature reveals the proposed approach almost attains at a satisfactory level except for 4D-Rosenbrock and
Griewangk problems. This is because the frequency of the best range is the highest and degradations stay a little along
the range except for only a few cases. Hence, we can conclude the total performance ranks at the third place following
DE and PSO a bit behind.

As shown at the bottom line of Table 11, such assertion is also supported from the average rate of success over all
benchmark problems. Moreover, according to similar evaluation done elsewhere (Shimizu, 2011)for those benchmark
problems under Fortran programming code, DE performed well (average success rate = 98.7%) just as the above results.
Meanwhile the poor performance of PSO (average success rate = 48.7%) thereat might arise the evaluation of NSGA-II
somehow in this study. From all of these, we can finally claim the proposed approach is satisfactorily efficient as a solution
method for SOPs.

Fig. 2 Histogram of success number for lower rank results regarding NSGA2 (Range refers to fopt).

4.3. Post-optimal evolution for scalarlized MOP
As mentioned already, though the weighting and ϵ−constraint methods have been used due to the effectiveness

regardless of their simplicity, a defect of those methods refers to the stiff setting of preference parameters like weighting
and ϵ-constraint values. In fact, it is almost impossible to pre-determine those values appropriately according to DM’s
preference. Hence, it makes sense to re-evaluate the result after such prior optimization through the post-optimal evolution
following the procedure mentioned in 3.2.

To discuss on this matter, we first transformed the multi-objective FES1 benchmark into SOPs in two ways, i.e.,
[Problem 4] and [Problem 5]. Then, we supposed three decision environments in terms of the preference parameters, i.e.,
case ϵ2 = 0.1 weighs on f2 and ϵ2 = 0.7 on f1 while case ”Weighting” balances both. Finally, solving [Problem 4’] or
[Problem 5’] by NGSA-II, we obtained each result shown in ”Prior” column of Table 12.

In the next step, we worked on the post-optimal evolution ([Problem 6]) for each case. Using the elite-induced
NSGA-II under the conditions popsz=6, gener=200 and introducing a single elite shown in ”Prior” column, we obtained
the respective result as shown in ”Post-optimal” column. Since the population size 6 is small enough for the final decision,
we neglected to limit the distribution, i.e., δ = ∞.

Among them, we used bold face to show the best solution while underline infeasible ones. By virtue of the post-
optimal evolution, let us note some solutions shown by italic letters outperform the prior solution. Hence, we could find
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out more favorable solution by elaborately inspecting those solutions again. In fact, since the pre-determined ϵ-constraint
values are not strictly definite, it is meaningful to work on this re-evaluation over the underlined infeasible solutions. For
example, as seen in the case of ϵ2 = 0.1, an infeasible (2.5548, 0.1086) might be more preferable to the best (2.7178,
0.0875) or the elite (2.6366, 0.1) since allowing a slight violation on f2 can give a big return on f1.

Figure 3 describes a summary of results for the original optimizations (w12, ϵ = 0.1 & ϵ = 0.7) and the post-optimal
evolutions (post-w12, post<0.1 & post<0.7). (In reference, we add the overall Pareto front derived by ordinal NSGA-II
under the conditions popsz=20, gener=100.) We know each post-optimal evolution is possible to derive the particular
segment covering the proper Pareto front around the respective prior optimal solution. Particularly, we should note this is
done under a small population size such as six by using the elite induced version of NSGA-II. Through inspecting such
front where DM must be most interested in, we can get a chance to re-consider the prior decision made under the pre-
determined indefinite preference parameters and improve the quality of multi-objective optimization, after all. Eventually,
we can relax the defect of classical scalarlized methods and renew them as more adaptive approaches.

Table 12 Result of FES1 benchmark by the proposed procedure mentioned in 3.2

Employed Preference Prior ([Problem 4’ or 5’]) Post-optimal ([Problem 6])
Method parameter ( f1, f2): Elite Objective value ( f1, f2) Objective value

w = (0.2, 0.8) (1.8510, 0.2077) 0.5363 (1.4875, 0.2089) 0.4646
(1.2923, 0.2749) 0.4784

Weighting (1.7935, 0.1795) 0.5023
(2.3434, 0.1357) 0.5772
(2.3603, 0.1347) 0.5798
(2.2045, 0.1406) 2.2045
(2.4921, 0.1168) 2.4921
(2.5548, 0.1086) 2.5548

ϵ2 = 0.1 (2.6366, 0.1) 2.6366 (2.7178, 0.0875) 2.7178
ϵ− constraint (2.9363, 0.0738) 2.9363

(3.0837, 0.0588) 3.0837
(0.5971, 0.7773) 0.5971
(0.7454, 0.7163) 0.7454

ϵ2 = 0.7 (1.0531, 0.7) 1.0531 (0.8292, 0.5473) 0.8292
(0.9483, 0.4234) 0.9483
(1.1198, 0.3913) 1.1198

Fig. 3 Post-optimal evolution for three optimal solutions obtained by classical methods.

5. Conclusion

To make a rational decision for difficult problems in various fields, multi-objective evolutionary algorithms are being
interested in these decades. Though they are useful techniques for multi-objective analysis, in this paper, we have proposed
a simple procedure for solving single-objective optimization problems by them. It provides a new application of them
to enhance the availability. Moreover, the idea has been deployed as a post-optimal evolution to repair the shortcomings
inherent to the classic multi-objective optimization methods like weighing and ϵ-constraint approaches. Actually, it is
developed in co-operation with our elite-induced evolutionary algorithms. After preliminarily examining a few properties
of the idea, a set of benchmark problems have been solved by NSGA-II and verified the effectiveness of the proposed
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idea. Moreover, in terms of the proposed post-optimal evolution, we can engage more practically and flexibly in decision-
making encountered today and in future as well.

Comparison with the inverse formulation ([Problem 1”]) is left for further investigation. Moreover, it is interesting
to apply the idea to modern scalarlized methods like MOON2/MOON2R (Shimizu et al., 2004)(Finally, refer to [Problem
3’]). To compare the performance among the other MOEAs like MODE, MOPSO, etc. also seems to be meaningful.

A part of this research was supported by Grant-in-Aid for Research of JSPS, 17K01250.
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1. Benchmark problems with multi-peak

Outline of the benchmark problems is listed below as problem name, objective function, range and global optimum
values.

Shekel: 1/ f (x) = 0.002 + ∑25
j=1

1
j+∑2

i=1(xi−ai j)6 ,

ai j = (−32,−16, 0, 16, 32,−32,−16, 0, 16, 32,−32,−16, 0,
16, 32,−32,−16, 0, 16, 32,−32,−16, 0, 16, 32;
−32,−32,−32,−32,−32,−16,−16,−16,−16,−16, 0, 0,

0, 0, 0, 16, 16, 16, 16, 16, 32, 32, 32, 32, 32)
−50 ≤ xi ≤ 50
x = (−32.0,−32.0), fopt = 0.998004

Schwefel: f (x) = 418.9829 − ∑2
i=1 xi sin(

√
|xi|),

−500 ≤ xi ≤ 500
x = (418.9829, 418.9829), fopt = 0

De Jong: f (x) = 3905.93 + 100(x2
1 − x2)2 + (1 − x1)2,

−2 ≤ xi ≤ 2
x = (1, 1), fopt = 3905.93

Goldstein & Price: f (x) = {1+ (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)} {30+ (2x1 − 3x2)2(18− 32x1 + 12x2
1 +

48x2 − 36x1x2 + 27x2
2)},

−2 ≤ xi ≤ 2
x = (0,−1), fopt = 3

Branin: f (x) = a(x2 − bx2
1 + cx1 − d)2 + e(1 − f ) cos(x1) + e,

a = 1, b = 5.1
4 ( 7

22 )2, c = 35
22 , d = 6, e = 10, f = 7

176
−5 ≤ xi ≤ 10
x = (− 22

7 , 12.275), x = ( 22
7 , 2.275), x = ( 66

7 , 2.475),
fopt = 0.3977272

Martin & Gaddy: f (x) = (x1 − x2)2 + {(x1 + x2 − 10)/3}2,
0 ≤ xi ≤ 10
x = (5, 5), fopt = 0

Rosenbrock: f (x) = 100(x2
1 − x2)2 + (1 − x1)2,

−2 ≤ xi ≤ 2
x = (1, 1), fopt = 0

4D-Rosenbrock: f (x) = ∑3
i=1{100(x2

i − xi+1)2 + (1 − xi)2},
−2 ≤ xi ≤ 2
x = (1, 1, 1, 1), fopt = 0

Hyper sphere: f (x) = ∑6
i=1 x2

i ,

−6 ≤ xi ≤ 6
x = (0, · · · , 0), fopt = 0

Griewangk: f (x) = 1 + ∑10
i=1

x2
i

4000 −
∏10

i=1 cos( xi√
i
),

−5 ≤ xi ≤ 5
x = (0, 0, · · · , 0, 0), fopt = 0
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